
Lessons Learned from Verifying
Actual C Code with Frama-C

PRiML Workshop

Virgile Prevosto
virgile.prevosto@cea.fr

Université Paris-Saclay, CEA, List

2021-07-12

mailto:virgile.prevosto@cea.fr


Outline

The Frama-C Platform

Verifying C Programs in the Wild

Some Challenges in C Code Analysis

Benefits of Addressing a Mainstream Language

Perspectives and Conclusion

2/22



The Frama-C Platform Frama-C at a glance

I https://frama-c.com/

I A Framework for modular analysis of C code.

I Initially developed at CEA List and Inria

I Kernel based on CIL (Necula et al. – Berkeley).

I Released under LGPL license (v23.0 Vanadium in June 2021)

I ACSL annotation language.
I Extensible platform

I Collaboration of analyses over same code
I Inter plug-in communication through ACSL formulas.
I Adding specialized plug-ins is easy

3/22

https://frama-c.com/


The Frama-C Platform Main Frama-C plugins

Frama-C
Plug-Ins

Specification
Generation

Aoräı

RPP

MetACSL

Specialized
Verification

CaFE

SecureFlow

Verification

Eva

WP

E-ACSL

Tests

PathCrawler

LTests

Code
Navigation

Studia

Impact Slicing

Concurrency
Multithread

Mthread

Conc2seq

Front-ends

JCard

Frama-Clang

included in the distribution

available under open-source licence

4/22



The Frama-C Platform ANSI/ISO C Specification Language

Presentation
I Based on the notion of contract, like in Eiffel

I Allows users to specify functional properties of their code

I Allows communication between various plugins

I Independent from a particular analysis

I ACSL reference manual at
https://github.com/acsl-language/acsl

5/22

https://github.com/acsl-language/acsl


The Frama-C Platform Example of ACSL Specification

/*@
requires ptr_val: \valid(a) && \valid(b);
requires ptr_sep: \separated(a,b);
ensures a_val: \at(*a,Pre) == *b;
ensures b_val: \at(*b,Pre) == *a;

*/
void swap(int* a, int* b);

6/22



Verifying C Programs in the Wild Absence of Runtime Errors

I Long-term partnership with
EdF and Areva/Framatome

I Fuelled many developments
in the Eva plug-in

I [Nucl. Eng. Tech., 2015]

Image ©Daniel Jolivet CC-BY-2.0

7/22

http://www.sciencedirect.com/science/article/pii/S1738573315000091


Verifying C Programs in the Wild Absence of Runtime Errors (2)

I Journey to a RTE-free X.509 parser

I [SSTIC’19]

I Analysis conducted by ANSSI

I Mixing Eva and WP plug-ins

I More complex structures than embedded code

8/22

https://www.sstic.org/2019/presentation/journey-to-a-rte-free-x509-parser/


Verifying C Programs in the Wild Verification of Functional Properties

I Long-term partnership with Airbus

I Fuelled many developments in the
WP plug-in

I Fully integrated in the software
toolchain

I Including some
internally-developed plug-ins

I [ERTS’20]

9/22

https://www.erts2020.org/inc/telechargerPdf.php?pdf=ERTS2020_paper_54.pdf


Verifying C Programs in the Wild Verification of Functional Properties
(2)

I Experiments on the Contiki OS

I Part of the H2020 project Vessedia

I Uses WP to prove correctness of the List module

I Ghost code as intermediate between code and spec

I [SAC’19]

10/22

https://allan-blanchard.fr/2019-sac.html


Verifying C Programs in the Wild Assessing Security Properties

I Experiments on the WooKey bootloader

I Part of Virgile Robles’ PhD (MetAcsl plug-in)

I Integrity: bootloader does not write on data banks

I Confidentiality: bootloader only reads what’s needed to compute
checksums

I [Formalise’21]

11/22

https://hal-cea.archives-ouvertes.fr/cea-03179670v1


Some Challenges in C Code Analysis Have a Complete,
Parseable Code Base

#include ” somel ib /hdr . h”
...
#if SOMECOND==42
extern
void builtin_f(
int x, int y);

#endif
...

I How to determine complete
list of dependencies?

I Which configuration to use
for pre-processing?

I Will there be some
vendor-dependent functions?

12/22



Some Challenges in C Code Analysis Implementation-Specific Behaviors

#pragma pack(push, 4)
struct S_aligned_4 {
...
}
#pragma pack(pop)

...

I Many extensions exist
beyond ISO C

I Frama-C support added on a
case-by-case basis

13/22



Some Challenges in C Code Analysis Intricacies of ISO C Standard

unsigned char x[1];
x[0] = x[0];
x[0] += 0;
x[0] *= 0;
if (x[0] != x[0]) {
/* might not

be dead
according to
standard

*/
}

I Standard is sometimes
extremely arcane

I With unintended interactions
between various sections

I Example: a non-volatile
location whose value is
allowed to vary

I Spoiler alert: Frama-C is a
bit conservative and will warn
on line 2 about access to
uninitialized value

14/22



Some Challenges in C Code Analysis Casts and Memory Models

s[0].x padding s[0].y s[1].x padding s[1].y

&s[0] &s[1]

struct S {
short x;
int y;
} s[2];

I Each memory block can be used as
unsigned char[]

I Padding bytes have a peculiar status

I Potential aliases can be very complex

I Eva allows for very low-level memory
operations

I WP relies on a more abstract model

15/22



Benefits of Addressing a Mainstream
Language

No Tough Design Choices

I The C standard is always right
I Just need to understand what it means

I Always possible to restrict a plug-in to a subset of C
I Unsupported cases are more explicit
I Facilitates writing examples for adding new feature

16/22



Benefits of Addressing a Mainstream
Language

Plenty of Potential Use Cases

I Just go to Github!

I Or to specific C code repositories (e.g. Juliet test suite)

I Open-source Case Studies

I Very useful also for finding new exercises when teaching

I Pretty much the only way to have examples of meaningful size

17/22

https://samate.nist.gov/SRD/testsuite.php
https://git.frama-c.com/pub/open-source-case-studies


Benefits of Addressing a Mainstream
Language

Get Help from the Community

I language-lawyer tag on StackOverflow
I Plenty of tooling

I CIL
I Clang
I JCDB
I LSP
I ...

18/22



Benefits of Addressing a Mainstream
Language

Attract Partners

I Common ground with anyone who knows C

I Applied research at the heart of CEA List’s mission

I Ensure focus is on concrete problems faced by our partners

I Does not preclude looking at more fundamental work

19/22



Perspectives and Conclusion From Documentation to Formal
Specification

I Decoder H2020 project

I Provide a unified platform for storing all relevant documents for a
given software project

I Use AI models to extract information from informal documents
and/or code

I Help user write formal specifications

20/22

https://decoder-project.eu/


Perspectives and Conclusion Frama-C and Continuous Integration

I LEIA project

I Newly funded as part of French Grand Défi Cyber

I Work on scalability and reuse of analysis results over small code
changes

21/22

https://www.entreprises.gouv.fr/fr/aap/numerique/resultats-de-l-appel-projet-grand-defi-cybersecurite-pme-et-startups


Perspectives and Conclusion Summary

I A mature framework for specifying and verifying properties of C
code

I Address both safety and security analysis

I Many areas for enhancements: new abstract domains, modular
Eva, new WP region-based memory models, C++ (or other)
front-end, higher-level properties, ...

I Integration in the whole software development cycle

I Importance of concrete use-cases to steer development in
interesting directions

I Collaborations welcome!

22/22


	The Frama-C Platform
	Verifying C Programs in the Wild
	Some Challenges in C Code Analysis
	Benefits of Addressing a Mainstream Language
	Perspectives and Conclusion

